1,207 research outputs found

    OpenForensics:a digital forensics GPU pattern matching approach for the 21st century

    Get PDF
    Pattern matching is a crucial component employed in many digital forensic (DF) analysis techniques, such as file-carving. The capacity of storage available on modern consumer devices has increased substantially in the past century, making pattern matching approaches of current generation DF tools increasingly ineffective in performing timely analyses on data seized in a DF investigation. As pattern matching is a trivally parallelisable problem, general purpose programming on graphic processing units (GPGPU) is a natural fit for this problem. This paper presents a pattern matching framework - OpenForensics - that demonstrates substantial performance improvements from the use of modern parallelisable algorithms and graphic processing units (GPUs) to search for patterns within forensic images and local storage devices

    Ensemble representation and the contents of visual experience

    Get PDF
    Of late philosophers of mind have been greatly exercised by a debate about the ‘admissible contents of perceptual experience’ (e.g., Bayne 2009; Bayne 2016; Brogaard 2013-a; Fish 2013; Hawley & Macpherson 2011; Logue 2013; Lyons 2005; Masrour 2011; McClelland 2016; Nanay 2011; Price 2009; Prinz 2013; Reiland 2014; Siegel 2006; Siegel 2010). The issue, roughly put, concerns the range of properties that ‘figure in’ perceptual experience. The focus of the debate has been very much on the contents of visual experience. It is relatively uncontroversial that colour, shape, illumination, spatial relations, motion, and texture can all figure in the contents of visual experience. The controversy begins when we ask whether any properties besides these are also visually experienced. If a clear case could be made for adding some class of properties to the list, this would be a valuable result. This paper makes just such a case for ‘ensemble properties’—features that belong to a set of perceptible objects as a whole as opposed to the individuals that constitute that set. Ensemble properties include such features as the mean size of an array of shapes or the average emotional expression of an array of faces. Recent research has yielded compelling evidence that the visual system routinely encodes such properties. Combining this with a number of philosophical considerations, we conclude that ensemble properties can (and often do) figure in visual experience

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    The proposed dropping of the genus crassostrea for all Pacific cupped oysters and its replacement by a new genus magallana: a dissenting view

    Get PDF
    The World Register of Marine Species (WoRMS) currently registers all Pacific cupped oysters that were formerly members of the genus Crassostrea in a new genus, Magallana. Magallana gigas is designated as an ‘‘accepted name,’’ whereas a search for Crassostrea gigas results in the message ‘‘no matching results found.’’ This has caused dismay among many biologists, aquaculturists, and other stakeholders with an interest in the Pacific and other oysters. This note, which is authored by 27 interested scientists, presents a dissenting view and a rebuttal of the proposed change of genus

    Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic

    Get PDF
    The Arabidopsis thaliana Qa-SNARE SYP121 (=SYR1/PEN1) drives vesicle traffic at the plasma membrane of cells throughout the vegetative plant. It facilitates responses to drought, to the water stress hormone abscisic acid, and to pathogen attack, and it is essential for recovery from so-called programmed stomatal closure. How SYP121-mediated traffic is regulated is largely unknown, although it is thought to depend on formation of a fusion-competent SNARE core complex with the cognate partners VAMP721 and SNAP33. Like SYP121, the Arabidopsis Sec1/Munc18 protein SEC11 (=KEULE) is expressed throughout the vegetative plant. We find that SEC11 binds directly with SYP121 both in vitro and in vivo to affect secretory traffic. Binding occurs through two distinct modes, one requiring only SEC11 and SYP121 and the second dependent on assembly of a complex with VAMP721 and SNAP33. SEC11 competes dynamically for SYP121 binding with SNAP33 and VAMP721, and this competition is predicated by SEC11 association with the N terminus of SYP121. These and additional data are consistent with a model in which SYP121-mediated vesicle fusion is regulated by an unusual “handshaking” mechanism of concerted SEC11 debinding and rebinding. They also implicate one or more factors that alter or disrupt SEC11 association with the SYP121 N terminus as an early step initiating SNARE complex formation

    In Defence of Modest Doxasticism About Delusions

    Get PDF
    Here I reply to the main points raised by the commentators on the arguments put forward in my Delusions and Other Irrational Beliefs (OUP, 2009). My response is aimed at defending a modest doxastic account of clinical delusions, and is articulated in three sections. First, I consider the view that delusions are in-between perceptual and doxastic states, defended by Jacob Hohwy and Vivek Rajan, and the view that delusions are failed attempts at believing or not-quite-beliefs, proposed by Eric Schwitzgebel and Maura Tumulty. Then, I address the relationship between the doxastic account of delusions and the role, nature, and prospects of folk psychology, which is discussed by Dominic Murphy, Keith Frankish, and Maura Tumulty in their contributions. In the final remarks, I turn to the continuity thesis and suggest that, although there are important differences between clinical delusions and non-pathological beliefs, these differences cannot be characterised satisfactorily in epistemic terms. \u

    Ontological transparency, (in)visibility, and hidden curricula:Critical pedagogy and contentious edtech

    Get PDF
    AbstractThe steady migration of higher education online has accelerated in the wake of Covid-19. The implications of this migration on critical praxis—the theory-in-practice of pedagogy—deserve further scrutiny. This paper explores how teacher and student-led educational technology research and development can help rethink online critical praxis. The paper is based on a recent research project at the University of Edinburgh that speculatively explored the potential for automation in teaching, which generated insights into current and future pedagogical practice among both teachers and students. From this project emerged a series of pedagogical positions that were centred around visions of the future of teaching in response to automation: the pedagogical potential of visibility and invisibility online, transparency, and interrogating the hidden curricula of both higher education and educational technology itself. Through the surfacing of these pedagogical positions, this paper explores how critical pedagogy can be built into the broader teacher function and begins to identify the institutional structures that could potentially impede or accelerate that process.</jats:p
    corecore